$$
\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}
$$

octamolybdate structures it is evident that the bonding within a cluster is controlled in the first place by the dominant influence of the strong bonds in the cis $\mathrm{Mo}\left(\mathrm{O}_{t}\right)_{2}$ groups. The weak internal bonds through oxygen bridges are complementary and can vary in length and direction to meet the needs of a particular structure.

The authors thank Dr Ward Robinson for his helpful interest and acknowledge assistance from the New Zealand Universities Research Committee and the University of Canterbury towards provision of equipment.

References

Atovmyan, L. O. \& Krasochka, O. N. (1972). Zh. Strukt. Khim. Engl. Transl. 13, 342-343.
Bernard J. \& Camelot, M. (1966). C. R. Acad. Sci. Sér. C, 263, 1068-1071.
Böschen, I., Buss, B. \& Krebs, B. (1974). Acta Cryst. B30. 48-56.

Cotton. F. A. \& Wing, R. M. (1965). Inorg. Chem. 4. 867-873.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Day. V. W.. Fredrich, M. J., Klemperer. W. G. \& Shum. W. (1977). J. Am. Chem. Soc. 99, 952-953.

Fuchs. J. \& Hartl. H. (1976). Angew. Chem. Int. Ed. Engl. 15. 375-376.
Gatehouse, B. N. \& Leverett, P. (1971). J. Chem. Soc. A, pp. 2107-2112.
Gmelins Handbuch der Anorganischen Chemie (1975). Vol. 53. Molybdän, Band 1, pp. 228-229. Heidelberg: Springer-Verlag.
Hider, R. N. \& Wilkins, C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 495-500.
Isobe. M., Marumo, F., Yamase. T. \& Ikawa. T. (1978). Acta Cry'st. B34, 2728-2731.
Klemperer, W. G. \& Shum, W. (1976). J. Am. Chem. Soc. 98. 8291-8293.
Lindqvist, I. (1950). Ark. Kemi, 3, 349-355.
Román, P., Jaud, J. \& Galy, J. (1981). Z. Kristallogr. 154. 59-68.
Schröder, F. A. (1975). Acta Cryst. B31, 2294-2309.
Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge. England.
Vivier, H., Bernard, J. \& Djomaa, H. (1977). Rel. Chim. Minér. 14, 584-604.

catena-Poly $\left\langle\mu\right.$-(2,2'-bipyrimidine- $\left.N, N^{\prime}: N^{\prime \prime}, N^{\prime \prime \prime}\right)$-[(nitrato-O, $\left.O^{\prime}\right)$ copper(III)]-di-(μ-nitrato- μ -O)-[(nitrato-O, $\left.O^{\prime}\right)$ copper(II) $\left.]\right\},\left[\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]$

By G. De Munno
Dipartimento di Chimica, Università della Calabria, 87030 Arcavacata di Rende, Cosenza, Italy'
and G. Bruno
Dipartimento di Chimica Inorganica e Struttura Molecolare, Università di Messina, Italy,

(Received 24 April 1984; accepted 24 July 1984)

Abstract

M_{r}\) (asymmetric unit) $=266 \cdot 64$, monoclinic, $C 2 / c, a=19.314$ (3), $b=7.914$ (1), $c=15.060$ (2) \AA, $\beta=137.4$ (1) ${ }^{\circ}, \quad V=1558$ (3) $\AA^{3}, \quad Z=8, \quad D_{m} \quad$ (by flotation) $=2.26, \quad D_{x}=2.273 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \bar{\lambda}=$ $0.71069 \AA, \quad \mu=28.06 \mathrm{~cm}^{-1}, \quad F(000)=1056, \quad T=$ 293 K , final conventional $R=0.039$ for 1248 unique observed reflections. The compound is a polymer built up by complex dimeric units formed by two Cu atoms coordinated by a molecule of the organic ligand and four nitrate groups. Both Cu atoms are six-coordinated with a distorted octahedral geometry, being bonded by two N atoms of the organic ligand, acting as doublybidentate, by two O atoms of a bidentate nitrate group and by two O atoms of two monodentate nitrate groups bridging two Cu atoms.

0108-2701/84/122030-03\$01.50

Introduction. Binuclear $\mathrm{Cu}^{\text {II }}$ complexes with ligands containing N atoms have been widely investigated in recent times since they are of great significance in biological systems (De Munno, Denti \& Dapporto, 1983; Thompson, 1983; Dapporto, De Munno, Sega \& Mealli, 1984). $2,2^{\prime}$-Bipyrimidine is a ligand with four N donor atoms whose $\mathrm{Cu}^{1 \mathrm{I}}$ and $\mathrm{Fe}^{\mathrm{II}}$ mixed complexes have been synthesized because they are possible models for cytochrome oxidase (Petty, Welch, Wilson, Bottomley \& Kadish, 1980; McLendon \& Smith, 1982). This ligand is potentially interesting for two reasons: it can act either as a doubly-bidentate bridging ligand or simply as a bidentate ligand. Mononuclear and binuclear $2,2^{\prime}$-bipyrimidine Ru^{11} complexes are known (Dose \& Wilson, 1978; Hunziker \& Ludi, 1977;

Ruminski \& Petersen, 1982). It has also been supposed that this ligand can act as monodentate with CuCl_{2} in polymeric arrays (Tuerstein, Feit \& Navon, 1974). The crystal structure of the title complex has been determined to define the behaviour of the ligand when coordinating to $\mathrm{Cu}^{\mathrm{II}}$ in the presence of NO_{3}^{-}ions.

Experimental. 1 mmol of $2,2^{\prime}$-bipyrimidine in 25 ml of ethanol was added to a solution of 2 mmol of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 25 ml of water. A blue crystalline precipitate formed by slow evaporation. Parallelepiped crystal $0.07 \times 0.14 \times 0.14 \mathrm{~mm}$. Siemens Stoe diffractometer, scan range $2 \theta=3-50^{\circ}$, graphite-monochromatized Mo $K \alpha$ radiation, $\omega-\theta$ scan technique. 25 reflections with $7^{\circ}<\theta<15^{\circ}$ used for measuring lattice parameters. No systematic loss of intensity of three standard reflections ($1 \overline{9} 3,2, \overline{1} 2,2,3 \overline{7} 3$). 1732 reflections measured with $\theta<25^{\circ}, 1248$ unique with $I \geq 3 \sigma(I), \quad 0 \leq h \leq 18, \quad 0 \leq k \leq 9, \quad \overline{15} \leq l \leq 15$. Absorption ignored. Lp correction. Scattering factors for nonhydrogen atoms (International Tables for X-ray Crystallography, 1974, p. 99), and for H atoms (Stewart, Davidson \& Simpson, 1965). Anomalousdispersion corrections (International Tables for X-ray Crystallography, 1974, p. 149). Structure solved by Patterson and Fourier techniques (Sheldrick, 1976) and refined by a full-matrix least-squares procedure; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized; anisotropic thermal parameters for $\mathrm{Cu}, \mathrm{C}, \mathrm{N}$ and O , isotropic for H atoms (from ΔF map); final $R=0.039, R_{w}=0.042, w=1 / \sigma^{2}$; $\max . \Delta / \sigma=0.069$, max. and min. $\Delta \rho$ excursions in ΔF synthesis 0.66 and $-1.09 \mathrm{e} \AA^{-3}$, respectively. VAX/ VMS computer of the Universita della Calabria; SHELX program (Sheldrick, 1976).

Discussion. Fig. 1 shows a dimeric unit of the complex. Final atomic parameters are reported in Table 1,* bond distances and angles in Table 2. The organic ligand is doubly-bidentate, chelating through its four N atoms; one nitrate group is asymmetrically bidentate $[\mathrm{Cu}-\mathrm{O}(1) 1.952(4), \mathrm{Cu}-\mathrm{O}(3) 2.547(2) \AA$] and a second is monodentate, asymmetrically bridging two Cu atoms $\quad\left[\mathrm{Cu}-\mathrm{O}(4) \quad 1.965\right.$ (3), $\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$ 2.300 (2) \AA J. Every Cu atom is therefore sixcoordinated with a $\left[\mathrm{CuN}_{2} \mathrm{O}_{4}\right]$ chromophore. The distortions from octahedral geometry are caused by the organic ligand and by the bidentate nitrate group, which subtend Cu at angles of 82.7 (2) and $55.1(1)^{\circ}$ respectively. On the other hand, the angles $\mathrm{N}(2)-$ $\mathrm{Cu}-\mathrm{O}(1)$ and $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$ are $90 \cdot 7$ (2) and $90.0(1)^{\circ}$ respectively and the atoms $\mathrm{N}(2), \mathrm{N}(1), \mathrm{Cu}$, $\mathrm{O}(1), \mathrm{O}(4)$ lie on the same plane. In fact, the deviations

[^0]

Fig. 1. View of the dimeric unit of the complex.
Table 1. Fractional atomic coordinates ($\times 10^{5}$ for Cu ; $\times 10^{4}$ for $\mathrm{N}, \mathrm{C}, \mathrm{O} ; \times 10^{3}$ for H) and equivalent isotropic (Hamilton, 1959) thermal parameters $\left(\times 10^{3}\right.$, for Cu $\times 10^{4}$)

	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Cu	-7067 (3)	18149 (4)	43648 (4)	206 (2)
$\mathrm{N}(1)$	226 (2)	3256 (3)	4501 (3)	20 (3)
N(2)	-793 (2)	3920 (3)	5023 (3)	21 (2)
$\mathrm{N}(3)$	-983 (2)	-374 (4)	2608 (3)	31 (2)
$\mathrm{N}(4)$	-2509 (2)	577 (4)	3112 (3)	30 (2)
$\mathrm{O}(1)$	-1618(2)	636 (3)	4323 (2)	30 (2)
$\mathrm{O}(2)$	-3176 (2)	-266 (4)	2818 (3)	46 (2)
$\mathrm{O}(3)$	-2615 (2)	1379 (4)	2319 (3)	47 (2)
$\mathrm{O}(4)$	-574 (2)	-254 (3)	3778 (2)	28 (2)
O(5)	-1255 (2)	908 (4)	1983 (3)	46 (2)
O(6)	-1061 (4)	-1777 (4)	2233 (4)	81 (5)
C(1)	754 (3)	2905 (5)	4271 (3)	26 (2)
$\mathrm{C}(2)$	277 (2)	4818 (4)	4862 (3)	20 (2)
C(3)	-1292 (3)	4249 (4)	5293 (4)	27 (3)
C(4)	1301 (3)	4154 (4)	4362 (4)	28 (3)
H(1)	78 (3)	179 (5)	411 (4)	25 (10)
H(3)	-159 (3)	363 (5)	528 (4)	22 (10)
H(4)	163 (3)	401 (5)	418 (4)	26 (10)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N}(1)$	$2.011(4)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.324(8)$
$\mathrm{Cu}-\mathrm{N}(2)$	$2.008(3)$	$\mathrm{C}(1)-\mathrm{H}(1)$	$0.92(4)$
$\mathrm{Cu}-\mathrm{O}(1)$	$1.952(4)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$1.378(7)$
$\mathrm{Cu}-\mathrm{O}(3)$	$2.547(2)$	$\mathrm{C}(4)-\mathrm{H}(4)$	$0.86(7)$
$\mathrm{Cu}-\mathrm{O}(4)$	$1.965(3)$	$\mathrm{C}(4)-\mathrm{C}\left(3^{\prime}\right)$	$1.372(6)$
$\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$	$2.300(2)$	$\mathrm{N}(3)-\mathrm{O}(4)$	$1.301(5)$
$\mathrm{C}(3)-\mathrm{C}\left(4^{\prime}\right)$	$1.372(6)$	$\mathrm{N}(3)-\mathrm{O}(5)$	$1.209(4)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$0.75(6)$	$\mathrm{N}(3)-\mathrm{O}(6)$	$1.204(5)$
$\mathrm{C}(3)-\mathrm{N}(2)$	$1.317(9)$	$\mathrm{N}(4)-\mathrm{O}(1)$	$1.293(3)$
$\mathrm{N}(2)-\mathrm{C}\left(2^{\prime}\right)$	$1.331(5)$	$\mathrm{N}(4)-\mathrm{O}(2)$	$1.210(6)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)$	$1.432(8)$	$\mathrm{N}(4)-\mathrm{O}(3)$	$1.230(6)$
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.325(4)$		
$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{Cu}$	$106.3(1)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}(3)-\mathrm{N}(2)$	$121.0(5)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(1)$	$82.7(2)$	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}\left(2^{\prime}\right)$	$117.4(3)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)$	$90.7(2)$	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Cu}$	$131.4(3)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	$90.0(1)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}(2)-\mathrm{Cu}$	$111.1(3)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(4)$	$96.6(2)$	$\mathrm{N}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)$	$117.4(3)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(3)$	$97.9(1)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{N}(1)$	$117.5(3)$
$\mathrm{N}(1) \mathrm{Cu}-\mathrm{O}(3)$	$126.2(1)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Cu}$	$111.1(4)$
$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{O}(3)$	$84.0(1)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$117.7(4)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	$55 \cdot 1(1)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Cu}$	$131.2(2)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$	$95.7(1)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	$120.3(4)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$	$104.5(1)$	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}\left(3^{\prime}\right)$	$118.4(5)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$	$85.4(1)$	$\mathrm{O}(1)-\mathrm{N}(4)-\mathrm{O}(2)$	$119.4(4)$
$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$	$73.7(1)$	$\mathrm{O}(1)-\mathrm{N}(4)-\mathrm{O}(3)$	$116.7(4)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}\left(4^{\prime}\right)$	$134.7(1)$	$\mathrm{O}(2)-\mathrm{N}(4)-\mathrm{O}(3)$	$123.9(3)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(4)$	$178.1(1)$	$\mathrm{O}(4)-\mathrm{N}(3)-\mathrm{O}(5)$	$118.5(3)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(1)$	$173.4(1)$	$\mathrm{O}(4)-\mathrm{N}(3)-\mathrm{O}(6)$	$116.3(4)$
$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{N}(3)$	$121.3(2)$	$\mathrm{O}(5)-\mathrm{N}(3)-\mathrm{O}(6)$	$125.2(5)$
$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{N}(3)$	$130.3(3)$		

of these atoms from their mean plane are -0.015 (3), -0.04 (3), 0.0005 (2), -0.021 (2) and -0.008 (2) \AA, respectively.

The angle $\mathrm{Cu}-\mathrm{O}(4)-\mathrm{Cu}^{\prime}\left[106 \cdot 3(1)^{\circ}\right.$], which is in agreement with pseudotetrahedral geometry for the $\mathrm{O}(4)$ atom, is strictly related to the $\mathrm{Cu} \cdots \mathrm{Cu}^{\prime}$ separation of 3.418 (1) \AA, which is close to the values found for other dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes (De Munno, Denti \& Dapporto, 1983; Dapporto, De Munno, Sega \& Mealli, 1984). The bond distances and angles within the $2,2^{\prime}$-bipyrimidine ligand, which is strictly planar [torsion angle $\mathrm{N}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{N}(1) 0.6(5)^{\circ}$], are in accordance with those previously reported (Fernholt, Rømming \& Samdal, 1981), the greatest difference being found in the $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ distance $[1.432(8) \AA$, which is shorter than the corresponding distance in non-coordinated $2,2^{\prime}$-bipyrimidine [1.511 (2) \AA in the gaseous state and 1.497 (4) \AA in the solid state], and is also shorter than that found in the coordinated $2,2^{\prime}$-bipyridyl (Procter \& Stephens, 1969), which is 1.501 (17) or 1.502 (16) \AA in the nitrito-bis($2,2^{\prime}$ bipyridyl)copper(II) nitrate complex. This shortening indicates a greater conjugation which is probably due to the double chelation of the ligand, which with the two $\mathrm{Cu}^{\mathrm{II}}$ atoms forms a particular conjugate system. The two Cu atoms are in the same plane as the two pyrimidine rings; in fact, the torsion angle $\mathrm{C}(3)-$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)$ is $0.1(4)^{\circ}$ and the dihedral angle between the $\mathrm{Cu}-\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)-$ $\mathrm{C}\left(2^{\prime}\right)$ planes is $176 \cdot 0(1)^{\circ}$.

References

Dapporto, P., De Munno, G., Sega, A. \& Mealli, C. (1984). Inorg. Chim. Acta, 83, 171-176.
De Munno, G., Denti, G. \& Dapporto, P. (1983). Inorg. Chim. Acta, 74, 199-203.
Dose, E. V. \& Wilson, L. J. (1978). Inorg. Chem. 17, 2660-2666.
Fernholt, L., Rømming, C. \& Samdal, S. (1981). Acta Chem. Scand. Ser. A, 35, 707-715.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hunziker, M. \& Ludi, A. (1977). J. Am. Chem. Soc. 99. 7370-7371.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
McLendon, G. \& Smith, M. (1982). Inorg. Chem. 21. 847-850.
Petty, R. H., Welch, B. R.. Wilson, L. J., Bottomley, L. A. \& Kadish, K. M. (1980). J. Am. Chem. Soc. 102, 611-620.
Procter, I. M. \& Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248-1255.
Ruminski, R. R. \& Petersen, J. D. (1982). Inorg. Chem. 21, 3706-3708.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge. England.
Stewart, R. F., Davidson, E. R. \& Simpson. W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Thompson, K. L. (1983). Can. J. Chem. 61, 579-583.
Tuerstein, A., Feit, B. A. \& Navon, G. (1974). J. Inorg. Nucl. Chem. 36, 1055-1059.

Acta Cryst. (1984). C40, 2032-2034

Structure of Bis(tetraethylammonium) Bis[dimercaptomaleodinitrilato(2-)-S,S' $\left.\mathbf{S}^{\mathbf{\prime}}\right]$ nickelate(II), $\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$

By C. Mahadevan, M. Seshasayee and Akella Radha
Department of Physics, Indian Institute of Technology, Madras 600 036, India
and P. T. Manoharan
Department of Chemistry, Indian Institute of Technology, Madras 600 036, India

(Received 6 April 1984; accepted 27 July 1984)

Abstract. $M_{r}=599.57$, triclinic, $P \overline{1}, a=7.5608$ (7), $b=8.7017$ (9), $c=12.626$ (3) $\AA, \alpha=93.73$ (1), $\beta=$ 104.27 (1) $, \gamma=75.257(9)^{\circ}, V=779 \AA^{3}, Z=1, D_{m}$ $=1.286, D_{x}=1.279 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71069 \AA$, $\mu=8.54 \mathrm{~cm}^{-1}, F(000)=318, T=293 \mathrm{~K}$. Final R $=0.058$ for 1550 unique observed diffractometer data. The metal atom of the anion has an approximately square-planar configuration and the amino atoms of the cations an approximately tetrahedral configuration. The $\mathrm{Ni}-\mathrm{S}$ distances are 2.171 (2) and 2.177 (2) \AA and the bite angle is $92.3(1)^{\circ}$. The anion is essentially planar with the Ni atom deviating most by 0.047 (1) \AA.

Introduction. The present work forms a part of our research program of structural studies of 1,2dithiolato complexes of transition metals.

Experimental. Crystals obtained by the procedure of Billig, Williams, Bernal, Waters \& Gray (1964). Approximate density measured by flotation in $\mathrm{CCl}_{4} /$ benzene showed $Z=1$.
Unit-cell parameters obtained by least-squares refinement of θ values of 25 high-angle reflections. Crystal $0.1 \times 0.3 \times 0.25 \mathrm{~mm}$, three-dimensional intensity data collected on an Enraf-Nonius CAD-4 diffractometer © 1984 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39661 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

